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Lecture 04
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Logistic regression
(continued)

Feature engineering
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Outline

= Logistic regression
» Performance metrics
- Multinomial logistic regression

= Feature engineering
» Defining features
- Data statistics

= Announcements:
» EXxercise hours: problem sets and extra python exercises
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Logistic regression
Performance metrics
Multinomial logistic regression



=PrL  Review of logistic regression
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=P*H ogistic regression on the penguin data

Palmer Penguins

species bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

Flipper length (normalized)

Chinstrap

Chinstrap 5 .
Gentoo ¢
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Bill length (normalized)

Chinstrap

Training set (95 examples)
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Based on dataset available here: https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris
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=Pl Logistic regression exercise last week

= Dataset 1: Void Formation in Welding, based on the paper

» Goal: formation of voids in friction stir welding as a function of the operation conditions
» Tool rotational speed, axial pressure
» The label: void or not void

Training set (60 examples)

y

Work piece

Tool shoulder

a Unaffected material
b Heat affected zone (HAZ)

¢ Thermomechanically
affected zone (TMAZ)

d Weld nugget (Part of
thermomechanically affected

Axial pressure (normalized)

Backing bar

Profiled pin

< 0
= O

zone) Rotation speed (normalized)

= Dataset 2: discriminate between sonar signals bounced off a mine (metal cylinder) and those bounced off a roughly
cylindrical rock

= Goal: predict whether the object is mine or rock based on

- The features (60 of them) are the energy within a particular frequency band, integrated over a certain period of time
* The label: rock/mine



='*L Performance metrics for binary classification

Confusion matrix, accuracy, error rate, recall
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Exercise
Performance metric for binary classification

We have used two approaches to train classifiers for spam email detection:
“non-spam” (class 0) and “spam” (class 1)

N =
Our test set has1000 emails, 900 of which were non-spam
Approach 1: classified all data as non-spam

Approach 2: classified 850 of non-spam emails as non-spam and 50 of spam
emails as spam

Write the confusion matrix of each approach
Compute the error rate, accuracy and recall of each algorithm

What do you conclude?
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Multinomial logistic regression "

How to deal with a multi-class (more than 2) classification problem ?

‘d S 1\\/'2/~~~,K{

Class 1 A,
Class2 B
Class3 @

Example: Medical diagrams:
Not ill (y = 1),Cold(y = 2), Covid(y = 3)
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=PrL Multinomial logistic regression through 3
probabilistic interpretation

Extend the logistic function to the multi-class setting by defining the softmax function

After applying softmax, each component will be in

CX CcX
softmax(z) = ( — P(z1) . P(zg) ) theinterval (0,1) and the component will add up to

zj:l exp(zj) Zj: i exp(zj) 1, so that they can be interpreted as probabillities

e . r\{e\ahpci Frc)\oo\\g‘\\\\) on K e e

]
Example:  softmax([1,5,2,3]) = €0.0152,0.8310,0.0414,0.1125]% < (K

Softmax regression: extends the probabilistic interpretation of logistic loss function
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=Pk Training multinomial logistic regression

Multinomial (Categorical) Cross-Entropy Loss
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=Pl Performance metric

Confusion matrix
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Feature engineering




=Pi-L

What is an input representation in ML?

A representation is a mathematical form (e.g., a vector)

It describes an observation in the real-world (e.g., an image, waveforms,
signals, ...)

It is used for subsequent steps (e.q., a classifier) to produce the outcome of
interest (e.q., recognizing objects)

It is often more compact than the original observation (lower dimensionality)
It is potentially more robust to nuisances
With a good representation, subsequent steps should be easier

15
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=F*L " The machine learning pipeline

Representation ML algorithm
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What is a Feature?

A feature vector is a representation,
i.e., a mathematical form that describes an observation in the real-world...

17
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Examples of representations
Image, pixel values

The image is translated into features representing the value of each
pixel in the image
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=Pi-L

Examples of representations
Image, color histogram

number of pixels that have colors in each of a fixed list of color ranges

19



=Pl Feature engineering

transforming raw data into a feature vector that represents the underlying data well

-—>F—>ﬂ

Designing clever features is a key part of the machine learning pipeline

For simple models, most of the “heavy lifting” is done there

20



=Prl Features

Types of features

= Numerical
* e.g., height, temperature, price, ...
= Ordinal (an intrinsic order on the categories)
 e.qg., 'like”, "somewnhat like”, “neutral”, “somewnhat dislike”, “dislike”
= Categorical (no intrinsic order on the finite categories)

» e.g., color, gender, species, ...

Preprocessing: the process of transforming raw feature vectors into a representation
that is more suitable for ML algorithms

Techniques differ depending on type of feature:
- Numerical, ordinal and categorical features need to be handled differently

21



cPFL  Looking “into” a feature

Probabilistic view: data is generated from an unknown
probability distribution

Probabilisty distribution
Ordinal/categorical data: Probability mass function

Numerical with continuous values: probability density function

Empirical distribution: distribution of observed data
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=Pk Summary statistics for “looking at” a feature
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=Pk Summary statistics for “looking at” a feature

Data: ordered
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EPFL o
Example of summary statistics

Feature value:
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=Pl Numerical features

Data normalization

Data normalization / feature scaling: Normalize features (bring them all to the same scale)

Crucial step in preprocessing:

= Many classifiers (e.g. KNN that we will see in next lectures) rely on distance metrics
= Gradient descent will converge faster

= Coefficients are penalized appropriately (in the case where regularization is applied)



=Pl Numerical features

Data normalization - Example

Example:

Training set (60 examples)

KNN with Palmer Penguins dataset | o adeiie

gentoo

(92
o

Features: body mass & bill length

SN
oo
]

&
(

Q: Which feature matters the most for the distance metric?
A:
= |f body mass in kg and bill length in mm

H
H
]

Bill length (mm)

1A
o

— bill length matters more oo

w
o
]

= |f body mass in g and bill length in m
— body mass matters more

w
(@)]
]

With normalization, the units of the features stop playing an
important role in the model accuracy 77 Bedymasske)
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Numerical features
Data normalization - Example

Training set (60 examples)
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Normalization

—

Bill length (normalized)

Training set, normalized (60 examples)

adelie
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Body mass (normalized)




=Pl Numerical features

Data normalization - Methods

Original Data Scaled data

Min-max scaling:
Scale each dimension of data to the range [0, 1]
For each dimension:

X — min(x)

xnorm T

max(x) — min(x) RN

0 2 4 6 0.0 0.5 1.0

Original Data Normalized data

Z-Score Normalization / Standardization:
Set mean of each dimension () to 0, standard deviation (o) to 1
For each dimension:

xnarm T

Ox

0.0 2.5 5.0 7.5 -4 -2 0 2 4



=Pl Numerical features

Data normalization - Qutliers

Features may have outliers or follow some heavy-
tailed distribution

= e.g. urban area population:

- most urban areas have a few thousands
Inhabitants

- a handful of urban areas have tens of millions of
inhabitants (New York, Tokyo, ...

= \With min-max scaling:
- typical values are scaled to a very small interval

— L?SQU\ can Ly 2. S e N0 Nl 2 Lo b




=Pl Numerical features

If the value of a component (dimension/field) is positive and ranges over a wide
scale

Logarithmic scaling: take the log of every value

= eg. x=1[2022 120 1000 1110]
— log(x) = [3.0 3.1 4.79 6.91 7.00]

= [nterpretation
- 20 and 22 are similar
1000 and 1100 are similar

« 20 and 120 are not similar

31



=Pl Numerical features

Binning

Binning / discretization: partition continuous features into discrete values

= e.g., age: instead of using each person’s age as a number, we may want to use
age ranges instead: 0-9, 10-19, 20-35, ...

Common types of binning:

= Quantile: all bins have the same number of points -QO—Q-QIQ—Q—Q—QIQ-Q—Q—Q—

= Clustered: a clustering algorithm (seen later ...‘_I_..'.‘_._’_I_’.‘.._H_

in this course) is used to separate values

= Uniform: all bins have identical widths

32



=Prl Ordinal features

Overview

Ordinal variables: finite set of discrete values, with a clear ordering between them
= Examples:

- Satisfaction (like, slightly like, neutral, slightly dislike, dislike)

- Education level (high school, BS, MS, PhD)

Integer encoding: map values to integers ranging from 1 to n
= N = number of unique values of the feature

= Mapping from O to n-1 is also used
Integer
encoding

{ Dislike, Slightly dislike, Neutral, Slightly Like, Like ) —> {1,2,3.4,5}

33



=Pk Categorical features

Overview

Categorical variables: finite set of discrete values, with no intrinsic ordering between them
= Examples:

- Animal species (cat, dog, iguana, penguin, ...)

- Eye color (blue, green, brown, ...)

« Sex (male / female)

As there Is no order between these values, integer encoding may not be appropriate
= €.g.assume [cat, dog, iguana, penguin] is encoded to [1, 2, 3, 4]

- [t wouldn’t make sense to imply that a cat is less than an iguana, or that a penguin is
closer to an iguana than it is to a cat

Instead, use one-hot encoding

34
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Categorical features
One-hot encoding

One-hot encoding: Each category is represented by a binary variable

ca (90 X ry
Dog q { %2 r O : 1 W 9 é
Q O

Iguan? One-hot ¥ ® g - /
Penguin encoding

k
°/c ot o ey ) ey
= One-hot encoding removes any assumption of order between categories

= |f there are many categories, the resulting feature vector can be very large
and sparse (e.g. suppose you one-hot encode every word in the dictionary)

35
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Missing values
Introduction

Raw data isn't always clean, it is quite common for some values to be missing

Medinc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude Each row is block group of population
Each column is defined as:

0 NaN 41.0  6.984127 NaN 322.0 2555556  37.88  -122.23 ; vedine median inoome n block
e HouseAge median house age in block
 AveRooms average number of rooms

1 NaN 21.0 NaN 0.971880 2401.0 NaN 37.86 -122.22 « AveBedrms average number of bedrooms
e Population block population

2 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 e AveOccup average house occupancy
e Latitude house block latitude

3 5.6431 52.0 NaN 1.073059 558.0 NaN 37.85 -122.25  Longitude house block longitude

4 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25

5 4.0368 52.0 NaN 1103627 413.0 NaN 37.85 -122.25

6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25

7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25




=Pi-L

Missing values
Overview

Many ML algorithms cannot work with missing values

— handling missing values properly is very important
How to handle missing data?

Deletion (simplest solution)

= |f only a few features have missing values, delete these features (i.e. delete the
column)

= |f only a few rows have missing values, delete these rows

Imputation
= Replace missing values by another value
= Many different data imputation techniques exist

37



=Pi-L

Missing values
Imputation - Numerical

How to impute data?

For numerical data:

- Constant imputation: Impute with constant value different from all other values
in the feature (such as 0)

- Mean imputation: Impute with mean of the data along that feature

- KNN imputation: Impute with mean of k nearest neighbors to data point (we
will discuss KNN approach)

38
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N O g A WN

Example: Mean imputation for housing dataset

Medinc HouseAge

NaN
NaN
7.2574
5.6431
3.8462
4.0368
3.6591

NaN

41.0
21.0
52.0
52.0
52.0
52.0
52.0
52.0

6.984127
NaN
8.288136
NaN
6.281853
NaN
4.931907
4.797527

NaN
0.971880
1.073446
1.073059

1.081081
1.103627
0.951362
1.061824

Missing values
Imputation - Numerical

AveRooms AveBedrms Population

322.0
2401.0
496.0
558.0
565.0
413.0
1094.0
1157.0

AveOccup

2.555556
NaN
2.802260
NaN
2.181467
NaN
2.128405
1.788253

N O g A WN

Medinc
4.88852
4.88852

7.25740
5.64310
3.84620
4.03680

3.65910

4.88852

HouseAge
41.0
21.0
52.0
52.0
52.0
52.0
52.0
52.0

6.984127
6.256710
8.288136
6.256710
6.281853
6.256710
4931907
4.797527

AveRooms AveBedrms

1.045183
0.971880
1.073446
1.073059
1.081081
1.103627
0.951362
1.061824

Population
322.0
2401.0
496.0
558.0
565.0
413.0
1094.0
1157.0

AveOccup

2.555556
2.291188
2.802260
2.291188
2.181467
2.291188
2.128405
1.788253
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Missing values
Imputation - Ordinal

How to impute data?

For ordinal data:

- Constant imputation: Impute with constant value different from all other values
in the feature (such as O, if encoding starts at 1)

- Median imputation: Impute with median of the feature
- KNN imputation: Impute with median of k nearest neighbors to data point

40
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Missing values
Imputation - Categorical

How to impute data?

For categorical data:
- Add new category: Add a new category corresponding to "missing value”

- Mode imputation: Impute with the mode of the feature (most common
category)

- KNN imputation: Impute with mode of k nearest neighbors to data point
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Feature expansion

Creating new features based on existing ones

Example: Let's add a synthetic feature: x; = x12 + x22

Data projected to R™2 (nonseparable)
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Feature expansion
Overview

Feature expansion is the process of creating derived features from the input data
= Adds complexity at the benefit of

- Reduces underfitting

- Can significantly improve performance

Popular feature expansion techniques:

= Feature crosses: Multiply features together

= Binning: Transform a numerical feature into several categorical or ordinal features
= Applying a non-linear function to each feature (e.g., sin, log, polynomials)

43



=Pk Summary and exercise hour announcements

Logistic regression for classification
» Determine a hyperplane/hyperplanes for separating the classes
 Probabilistic interpretation
» Loss function different than performance metric

Feature engineering
» How to best represent your numerical/ordinal/categorial data for the computer
- Need some insight into the data to address it

Exercise hour
 This week: problem sets
» Next week: quizzes
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